医学影像:辅助和代替医生看胶片
医学影像与人工智能的结合,是数字医疗领域较新的分支,而且是数字医疗产业的热点。医学影像包含了海量的数据,即使有经验的医生有时也显得无所适从。医学影像的解读需要长时间专业经验的积累,放射科医生的培养周期相对较长,而人工智能在对图像的检测效率和精度两个方面,都可以做得比专业医生更快,还可以减少人为操作的误判率。
近年,从图像中识别出对象物的“图像识别技术”的性能在“深度学习”的帮助下得以迅速提高。X光照片的分辨率为×像素。其中的恶性肿瘤的尺寸为3×3像素左右。从非常大的图像上判断一个很小的阴影状物体是不是恶性肿瘤,是非常难的任务。首先会将一张胶片进行预处理,然后分割成若干小块,再在每一块中提取特征值和数据库进行对比,最后经过匹配后作出阳性判断。在整个诊断过程中,人工智能也会自己做出深度学习,在病历库中寻找案例,做出自己判断的依据。放射科医师诊断1名患者的CT扫描图像需要10~20分钟,写诊断报告需要10分钟左右。
在国外,已经出现了数家较为知名的初创企业。表格中的Enlitic就是一家比较知名的人工智能医学影像企业,虽然创立于年,但次年就被MITTechnologyReview评为全球最智慧的50家公司之一,获得总计万美元的融资。Butterfly正在研发一种小型超声设备,这套系统主要依靠软件来运行,包括用人工智能专家开发的技术来梳理一系列图像,从而提炼出可以自动进行疾病诊断的功能。活跃度全球第一和第三的专注人工智能的风险投资机构也纷纷成为智能医学影像初创企业的投资人。
我们对比了中国和美国的医学影像现状,从影像方面的误诊人数来看,美国每年的误诊人数达到了万,而中国因为人口基数庞大,达到了惊人的万/年,这些误诊主要发生在基层医疗机构。目前中国的医学影像正在从传统的胶片向电子胶片过渡,而美国传统胶片已经成为历史。电子胶片的广泛使用使得医学影像数据大幅度增长,美国的数据年增长率达到了63.1%,在中国也达到了30%。放射科医生的年增长率美国和中国仅仅只有2.2%和4.1%,远远低于影像数据的增长,形成了巨大的缺口。这意味着医师工作量大增,判断准确性下降,借助人工智能对影像进行判断则能有效弥补该缺口。在国内这个缺口略小于美国,但我们的特殊国情也使得跨平台的影像云有巨大市场需求。
Enlitic开发了从X光照片及CT扫描图像中找出恶性肿瘤的图像识别软件,利用深度学习的方法之一“ConvolutionalNeuralNetwork(ConvNet,卷积神经网络)”对放射技师检查过有无恶性肿瘤及肿瘤位置等的大量医疗图像数据进行机器学习,自动总结出代表恶性肿瘤形状等的“特征”以及重视哪些特征能够判断有无恶性肿瘤等“模式”。Enlitic使用肺癌相关图像数据库“LIDC”和“NLST”进行了验证,结果发现,该公司开发的系统的肺癌检出精度比一名放射技师检查肺癌的精度高5成以上。无论是对患者、医院,人工智能在医学影像上的帮助都是巨大的,可帮助患者更快速地完成X光、B超、CT等健康检查,获得更准确的诊断建议;帮助医师更快完成读片,已经更准确的辅助诊断;医院也可以得到云平台支持,建立多元数据库,降低成本。而如果采用Enlitic公司的系统可以使CT扫描图像的诊断时间减半,当骨裂面积小到只占到整张X光片0.1%时,也能准确识别出来。
前面我们分析了人工智能对患者、医院所带来的好处,在医学影像企业中,人工智能技术的加入对创业团队的核心竞争力也有非常大的影响。根据动脉网对医学影像初创企业的走访,拥有人工智能技术,整个团队能显著减少人力成本,技术团队规模在A轮以前可以控制在20人以内,技术人员和非技术人员的比例达到2.6:1。如果没有人工智能技术,那么就要组件一只人力成本不菲的客服团队和医师沟通,技术人员和非技术人员的比例为1.1:1,规模也达到了30至50人。分级诊疗和远程医疗的大背景使中国的医学影像创业团队更多的投入资源搭建云平台,但长期看能否有人工智能的技术实力也是核心竞争力的一部分。
预览时标签不可点收录于话题#个上一篇下一篇